Advertisements
Advertisements
प्रश्न
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
उत्तर
`sin((A + B)/2) = cos"C/2`
We know that for a triangle ΔABC
`<A + <B + <C = 180^circ`
`(<B + <A)/2 = 90^circ - (<C)/2`
`sin((A+B)/2) = sin(90^circ - C/2)`
= `cos(C/2)`
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
If sec θ + tan θ = x, then sec θ =
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
If sin θ = `1/2`, then find the value of θ.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`