Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
cos θ. sec θ = ?
विकल्प
1
0
`1/2`
`sqrt(2)`
उत्तर
1
cos θ. sec θ = cos θ. `1/"cos θ"` = 1.
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
cos4 A − sin4 A is equal to ______.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
If tan α + cot α = 2, then tan20α + cot20α = ______.
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?