Advertisements
Advertisements
प्रश्न
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
उत्तर
We have,
tan α = n tan β
⇒ `tan β = tan α/n`
⇒ `cot β = n/tan α`
sin α = m sin β
⇒ `sin β = sin α /m`
⇒ `cosec β = m/sin α`
Since, cosec2 β - cot2 β = 1
⇒ `m^2/sin^2 α - n^2/tan^2 α = 1`
⇒ `m^2/sin^2 α - (n^2cos^2α )/sin^2 α = 1`
⇒ m2 - n2cos2 α = sin2 α
⇒ m2 - n2cos2 α = 1 - cos2 α
⇒ m2 - 1 = (n2 - 1)cos2 α
⇒ cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
If cos θ = `24/25`, then sin θ = ?
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.