English

If Tan α = N Tan β, Sin α = M Sin β, Prove that Cos2 α = (M^2 - 1)/(N^2 - 1) - Mathematics

Advertisements
Advertisements

Question

If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.

Sum

Solution

We have,
tan α = n tan β

⇒ `tan β = tan α/n`

⇒ `cot β  = n/tan α`

sin α = m sin β

⇒  `sin β = sin α /m`

⇒  `cosec β =  m/sin α`

Since, cosec2 β - cot2 β = 1

⇒ `m^2/sin^2 α - n^2/tan^2 α = 1`

⇒ `m^2/sin^2 α - (n^2cos^2α )/sin^2 α = 1`

⇒ m2 - n2cos2 α  = sin2 α

⇒ m2 - n2cos2 α = 1 - cos2 α

⇒ m2 -  1 = (n2 - 1)cos2 α

⇒ cos2 α = `(m^2 - 1)/(n^2 - 1)`.

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 35
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×