Advertisements
Advertisements
Question
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Solution
We have,
tan α = n tan β
⇒ `tan β = tan α/n`
⇒ `cot β = n/tan α`
sin α = m sin β
⇒ `sin β = sin α /m`
⇒ `cosec β = m/sin α`
Since, cosec2 β - cot2 β = 1
⇒ `m^2/sin^2 α - n^2/tan^2 α = 1`
⇒ `m^2/sin^2 α - (n^2cos^2α )/sin^2 α = 1`
⇒ m2 - n2cos2 α = sin2 α
⇒ m2 - n2cos2 α = 1 - cos2 α
⇒ m2 - 1 = (n2 - 1)cos2 α
⇒ cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Hence proved.
APPEARS IN
RELATED QUESTIONS
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Choose the correct alternative:
sec2θ – tan2θ =?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that sin4A – cos4A = 1 – 2cos2A