Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
उत्तर
LHS = `(tanθ + secθ - 1)/(tanθ - secθ + 1) `
= `(tanθ + secθ - {sec^2θ - tan^2θ})/(1 + tanθ -secθ)`
= `(tanθ + secθ - {(secθ + tanθ)(secθ - tanθ)})/(1 + tanθ - secθ)`
= `([tanθ + secθ]{1 - (secθ - tanθ)})/[[1 + tanθ - secθ]` = `([tanθ + secθ][1 + tanθ - secθ])/[[1 + tanθ - secθ]]`
= `[tanθ + secθ] = (1 + sinθ)/cosθ` = RHS
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
What is the value of 9cot2 θ − 9cosec2 θ?
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S