Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
उत्तर
LHS = `sin^2A(1 - sin^2B) - (1 - sin^2A)sin^2B`
= `sin^2A - sin^2A.sin^2B - sin^2B + sin^2A.sin^2B`
= `sin^2A - sin^2B` = RHS
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A