Advertisements
Advertisements
प्रश्न
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
उत्तर
LHS = `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
= `(cosec θ. cos θ. cot θ)/(cosec θ. cos θ. cot θ)`
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α