Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
उत्तर
L.H.S. = `1/(1 - sinA) + 1/(1 + sinA)`
= `(1 + sinA + 1 - sinA)/((1 - sinA)(1 + sinA))`
= `2/(1 - sin^2A)`
= `2/cos^2A`
= 2 sec2 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`