हिंदी

What is the Value of (1 + Cot2 θ) Sin2 θ? - Mathematics

Advertisements
Advertisements

प्रश्न

What is the value of (1 + cot2 θ) sin2 θ?

संक्षेप में उत्तर

उत्तर

We have, 

`(1+cot^2 θ)sin^2θ= cosec^2θxxsin^2θ` 

`= (1/sinθ)^2 xx sin^2θ` 

= `1/sin^2θxxsin^2θ` 

`=1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.3 | Q 3 | पृष्ठ ५५

संबंधित प्रश्न

Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


`(sec^2 theta-1) cot ^2 theta=1`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


From the figure find the value of sinθ.


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×