Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
विकल्प
True
False
उत्तर १
This statement is False.
Explanation:
It is given that, \[\sin\theta = x + \frac{1}{x}\]
\[\Rightarrow - 1 \leq x + \frac{1}{x} \leq 1\]
\[\Rightarrow x + \frac{1}{x} \leq 1\]
\[\Rightarrow x^2 + 1 \leq x\]
\[\Rightarrow x^2 + 1 - x \leq 0\]
\[\text{Take }x = 1, \]
\[ \Rightarrow 1 + 1 - 1 \leq 0\]
\[ \Rightarrow 1 \leq 0\]
Which is false, so x is not always a positive real number.
उत्तर २
This statement is False.
Explanation:
Given: a ≠ b and ab > 0
(Because Arithmetic Mean (AM) of a list of non-negative real numbers is greater than or equal to the Geometric mean (GM) of the same list)
⇒ AM > GM
If a and b be such numbers, then
AM = `(a + b)/2` and Gm = `sqrt(ab)`
By assuming that cos θ = `(a^2 + b^2)/(2ab)` is true statement.
Similarly, AM and GM of a2 and b2 will be,
AM = `(a^2 + b^2)/2` and GM = `sqrt(a^2 * b^2)`
So, `(a^2 + b^2)/2 > sqrt(a^2 * b^2)` ...(By AM and GM property as mentioned earlier in the answer)
⇒ `(a^2 + b^2)/2 > ab`
⇒ `(a^2 + b^2)/(2ab) > 1`
⇒ cos θ > 1 ...(By our assumption)
But this not possible since, –1 ≤ cos θ ≤ 1
Thus, our assumption is wrong and `cos theta ≠ (a^2 + b^2)/(2ab)`
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that cot2θ × sec2θ = cot2θ + 1
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.