हिंदी

Prove the Following Trigonometric Identities. (1 + Sin Theta)/Cos Theta + Cos Theta/(1 + Sin Theta) = 2 Sec Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`

योग

उत्तर १

We have to prove `(1 + sin theta)/cos theta + cos theta/1+ sin theta - 2 sec theta`

We know that, `sin^2 theta + cos^2 theta = 1`

Multiplying the denominator and numerator of the second term by `(1 - sin theta)` we have

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = (1 = sin theta)/cos theta =  (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`

`= (1 + sin theta)/cos theta =  (cos theta (1 - sin theta))/(1-sin theta)`

`= (1 + sin theta)/cos theta + (cos theta(1 - sin theta))/cos^2 theta`

`= (1 + sin theta)/cos theta + (1 - sin theta)/cos theta`

`= (1 + sin theta +  1 -sin theta)/cos theta`

`= 2/cos theta`

`= 2 sec theta`

shaalaa.com

उत्तर २

LHS = `(1 + sin θ)/cos θ + cos θ/(1 + sin θ)`

= `(( 1 + sin θ)^2 + cos^2 θ)/(cos θ( 1 + sin θ))`

= `( 1 + sin^2 θ + 2 sin θ + cos^2 θ)/(cos θ( 1 + sin θ ))`

= `(1 + (sin^2θ + cos^2 θ) + 2 sin θ)/(cos θ(1 + sin θ))`

= `(1 + 1 + 2sin θ)/(cos θ(1 + sin θ))`

= `(2(1 + sin θ))/(cos θ(1 + sin θ))`

= 2 sec θ

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 18 Trigonometry
Exercise 2 | Q 60.3
आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 26 | पृष्ठ ४४

संबंधित प्रश्न

9 sec2 A − 9 tan2 A = ______.


 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×