Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
उत्तर १
We have to prove `(1 + sin theta)/cos theta + cos theta/1+ sin theta - 2 sec theta`
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying the denominator and numerator of the second term by `(1 - sin theta)` we have
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = (1 = sin theta)/cos theta = (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`
`= (1 + sin theta)/cos theta = (cos theta (1 - sin theta))/(1-sin theta)`
`= (1 + sin theta)/cos theta + (cos theta(1 - sin theta))/cos^2 theta`
`= (1 + sin theta)/cos theta + (1 - sin theta)/cos theta`
`= (1 + sin theta + 1 -sin theta)/cos theta`
`= 2/cos theta`
`= 2 sec theta`
उत्तर २
LHS = `(1 + sin θ)/cos θ + cos θ/(1 + sin θ)`
= `(( 1 + sin θ)^2 + cos^2 θ)/(cos θ( 1 + sin θ))`
= `( 1 + sin^2 θ + 2 sin θ + cos^2 θ)/(cos θ( 1 + sin θ ))`
= `(1 + (sin^2θ + cos^2 θ) + 2 sin θ)/(cos θ(1 + sin θ))`
= `(1 + 1 + 2sin θ)/(cos θ(1 + sin θ))`
= `(2(1 + sin θ))/(cos θ(1 + sin θ))`
= 2 sec θ
Hence proved.
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ