Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
उत्तर
L.H.S. = `(1 + sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A)`
= `((1 + sin A)(cosec A + cot A) - (1 - sin A)(cosec A - cot A))/((cosec A - cot A)(cosec A + cot A))`
= `(cosec A + cot A + sin A cosec A + sin A cot A - cosec A + cot A + sin A cosec A - sin A cos A)/(cosec^2A - cot^2A)`
= 2 cot A + 2 sin A cosec A
= 2 cot A + 2 `1/(cosec A) xx cosec A`
= 2 (cot A + 1)
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Define an identity.
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`