Advertisements
Advertisements
प्रश्न
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
उत्तर
Here,
x2 = a2 sec2θ + 2ab sec θ.tan θ + b2tan2θ
y2 = a2 tan2θ + 2ab sec θ.tan θ + b2sec2θ
⇒ x2 - y2 = a2 ( sec2θ - tan2θ ) - b2 ( sec2θ - tan2θ )
⇒ x2 - y2 = a2 - b2. ....( ∵ sec2θ - tan2θ = 1)
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If tan θ × A = sin θ, then A = ?
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`