Advertisements
Advertisements
प्रश्न
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
उत्तर
Sin4θ – cos4θ = 1 – 2cos2θ
LHS = Sin4θ – cos4θ
LHS = (Sin2θ)2 – (cos2θ)2
LHS = (Sin2θ + cos2θ)(Sin2θ - cos2θ) ...[a2 – b2 = (a + b)(a – b)]
LHS = (Sin2θ – cos2θ).(1) ...(Sin2θ + cos2θ = 1)
LHS = 1 – cos2θ – cos2θ ...(1 – Sin2θ = cos2θ)
LHS = 1 – 2cos2θ
RHS = 1 – 2cos2θ
LHS = RHS
Hence proved.
संबंधित प्रश्न
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
` tan^2 theta - 1/( cos^2 theta )=-1`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Find the value of sin 30° + cos 60°.
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Given that sin θ = `a/b`, then cos θ is equal to ______.