Advertisements
Advertisements
प्रश्न
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
उत्तर
L.H.S. = sin2 θ + cos4 θ
= 1 - cos2 θ + cos4 θ
= 1 - cos2 θ (1 - cos2 θ)
= 1 - (1 - sin2 θ) sin2 θ
= 1 - sin2 θ + sin4 θ
= cos2 θ + sin4 θ
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
If sin θ = `1/2`, then find the value of θ.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)