Advertisements
Advertisements
प्रश्न
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
उत्तर
tan θ – sin2θ = cos2θ ......[Given]
∴ tan θ = sin2θ + cos2θ
∴ tan θ = 1 ....[∵ sin2θ + cos2θ = 1]
But, tan 45° = 1
∴ tan θ = tan 45°
∴ θ = 45°
sin2θ = sin245°
= `(1/sqrt(2))^2`
= `1/2`
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
What is the value of (1 + cot2 θ) sin2 θ?
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.