Advertisements
Advertisements
प्रश्न
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
उत्तर
sin6A + cos6A = (sin2A)3 + (cos2A)3
= (1 – cos2A)3 + (cos2A)3 ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= 1 – 3 cos2A + 3(cos2A)2 – (cos2A)3 + cos6A ......[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 1 – 3 cos2A(1 – cos2A) – cos6A + cos6A
= 1 – 3 cos2A sin2A
sin4A + cos4A = (sin2A)2 + (cos2A)2
= (1 – cos2A)2 + (cos2A)2
= 1 – 2 cos2A + (cos2A)2 + (cos2A)2 ......[∵ (a – b)2 = a2 – 2ab + b2]
= 1 – 2 cos2A + 2 cos4A
= 1 – 2 cos2A(1 – cos2A)
= 1 – 2 cos2A sin2A
L.H.S = 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1
= 2(1 – 3 cos2A sin2A) – 3(1 – 2 cos2A sin2A) + 1
= 2 – 6 cos2A sin2A – 3 + 6 cos2A sin2A + 1
= 0
= R.H.S
∴ 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
If sin θ = `1/2`, then find the value of θ.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`