Advertisements
Advertisements
प्रश्न
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
उत्तर
`(p^2 - 1)/(p^2 + 1)`
= `((secA + tanA)^2 - 1)/((secA + tanA)^2 + 1)`
= `(sec^2A + tan^2A + 2tanA secA - 1)/(sec^2A + tan^2A + 2tanA secA + 1)`
= `(tan^2A + tan^2A + 2tanA secA)/(sec^2A + sec^2A + 2tanA secA)`
= `(2tan^2A + 2tanA secA)/(2sec^2A + 2tanA secA)`
= `(2tanA(tanA + secA))/(2secA(tanA + secA)`
= sin A
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.