Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
उत्तर १
`cotA/(1 - tanA) + tanA/(1 - cotA)`
= `(1/tanA)/(1 - tanA) + tanA/(1 - 1/tanA)`
= `1/(tanA(1 - tanA)) + tan^2A/(tanA - 1)`
= `(1 - tan^3A)/(tanA(1 - tanA))`
= `((1 - tanA)(1 + tanA + tan^2A))/(tanA(1 - tanA))`
= `(1 + tanA + tan^2A)/tanA`
= cot A + 1 + tan A
उत्तर २
L.H.S. = `cotA/(1 - tanA) + tanA/(1 - cotA)`
= `((cosA/sinA))/((1/1 - sinA/cosA)) + ((sinA/cosA))/((1/1 - cosA/sinA))`
= `((cosA/sinA))/(((cosA - sinA)/cosA)) + ((sinA/cosA))/(((sinA - cosA)/sinA))`
= `(cos^2A)/(sinA(cosA - sinA)) + (sin^2A)/(cosA(sinA - cosA))`
= `(cos^2A)/(sinA(cosA - sinA)) - (sin^2A)/(cosA(cosA - sinA))`
= `(cos^3A - sin^3A)/(sinAcosA(cosA - sinA))`
= `(\cancel((cosA - sinA))(cos^2A + cosAsinA + sin^2A))/(sinAcosA\cancel((cosA - sinA)))`
= `(cos^2A + cosA sinA + sin^2A)/(sinAcosA)`
= `(\cancel(cos^2A))/(sinA\cancel(cosA)) + (\cancel(cosAsinA))/(\cancel(sinAcosA)) + (\cancel(sin^2A))/(\cancel(sinA)cosA)`
= cos A + 1 + tan A
= 1 + tan A + cot A
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If cosA + cos2A = 1, then sin2A + sin4A = 1.