Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
उत्तर
`cosA/(1+sinA)+tanA`
= `cosA/(1 + sinA) + sinA/cosA`
= `(cos^2A + sinA + sin^2A)/((1 + sinA)cosA)`
= `(1 + sinA)/((1 + sinA)cosA)`
= `(cos^3A + cosA sinA - sin^2A)/(cos^2A - sinAcosA)`
= `1/cosA`
= sec A
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.