English

Prove that: Sin4θ - cos4θ = 1 - 2cos2θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ

Sum

Solution

Sin4θ – cos4θ = 1 – 2cos2θ

LHS = Sin4θ – cos4θ

LHS = (Sin2θ)2 – (cos2θ)2

LHS = (Sin2θ + cos2θ)(Sin2θ - cos2θ)       ...[a2 – b2 = (a + b)(a – b)]

LHS = (Sin2θ – cos2θ).(1)         ...(Sin2θ + cos2θ = 1)

LHS = 1 – cos2θ – cos2θ          ...(1 – Sin2θ = cos2θ)

LHS = 1 – 2cos2θ

RHS = 1 – 2cos2θ 

LHS = RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Practice Set 6.1 [Page 131]

RELATED QUESTIONS

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4


sin2θ + sin2(90 – θ) = ?


If tan θ = `13/12`, then cot θ = ?


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×