Advertisements
Advertisements
Question
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
Solution
Sin4θ – cos4θ = 1 – 2cos2θ
LHS = Sin4θ – cos4θ
LHS = (Sin2θ)2 – (cos2θ)2
LHS = (Sin2θ + cos2θ)(Sin2θ - cos2θ) ...[a2 – b2 = (a + b)(a – b)]
LHS = (Sin2θ – cos2θ).(1) ...(Sin2θ + cos2θ = 1)
LHS = 1 – cos2θ – cos2θ ...(1 – Sin2θ = cos2θ)
LHS = 1 – 2cos2θ
RHS = 1 – 2cos2θ
LHS = RHS
Hence proved.
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
sin2θ + sin2(90 – θ) = ?
If tan θ = `13/12`, then cot θ = ?
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
(1 – cos2 A) is equal to ______.