Advertisements
Advertisements
प्रश्न
9 sec2 A − 9 tan2 A = ______.
विकल्प
1
9
8
0
उत्तर
9 sec2 A − 9 tan2 A = 9.
Explanation:
9 sec2A − 9 tan2A
= 9 (sec2A − tan2A)
= 9 (1) ...[As sec2 A − tan2 A = 1]
= 9
Hence, alternative 9 is correct.
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Evaluate sin25° cos65° + cos25° sin65°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
From the figure find the value of sinθ.
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Choose the correct alternative:
1 + cot2θ = ?
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
(1 – cos2 A) is equal to ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ