Advertisements
Advertisements
प्रश्न
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
उत्तर
Given:
x = a sinθ and y = b cosθ
So, \[b^2 x^2 + a^2 y^2 = b^2 \left( asin\theta \right)^2 + a^2 \left( bcos\theta \right)^2 \]
\[ = a^2 b^2 \sin^2 \theta + a^2 b^2 \cos^2 \theta\]
\[ = a^2 b^2 \left( \sin^2 \theta + \cos^2 \theta \right)\]
We know that, `sin^2 θ+cos^2θ=1`
Therefore,
\[b^2 x^2 + a^2 y^2 = a^2 b^2\]
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
9 sec2 A − 9 tan2 A = ______.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.