हिंदी

Evaluate: (Tan 65°)/(Cot 25°) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:
`(tan 65°)/(cot 25°)`

योग

उत्तर

`(tan 65°)/(cot 25°)`

= `(tan  90° - 25°)/(cot 25°)`     ...( tan(90°θ) = cotθ )

= `( cot 25° )/( cot 25°)`

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 30/4/3

संबंधित प्रश्न

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


Prove that sin4A – cos4A = 1 – 2cos2A


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×