Advertisements
Advertisements
प्रश्न
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
उत्तर
L.H.S. = (m2 + n2) cos2 B
= `(cos^2A/cos^2B + cos^2A/sin^2B)cos^2B`
= `((cos^2Asin^2B + cos^2Acos^2B)/(cos^2Bsin^2B))cos^2B`
= `((cos^2Asin^2B + cos^2Acos^2B)/sin^2B)`
= `(cos^2A(sin^2B + cos^2B))/sin^2B`
= `cos^2A/sin^2B`
= n2
Hence, (m2 + n2) cos2 B = n2.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`sin^2 theta + 1/((1+tan^2 theta))=1`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ