Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
उत्तर
We have to prove the following identity
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Consider the LHS = `(cos theta - sin theta + 1)/(cos theta + sin theta - 1)`
`= (cos theta - sin theta + 1)/(cos theta + sin theta - 1) xx (cos theta + sin theta + 1)/(cos theta + sin theta + 1)`
`= ((cos theta + 1)^2 - (sin theta)^2)/((cos theta + sin theta)^2 - (1)^2)`
`= (cos^2 theta + 1 + 2 cos theta - sin^2 theta)/(cos^2 theta + sin^2 theta + 2 cos theta sin theta - 1)`
`= (cos^2 theta + 1 + 2 cos theta - (1 - cos^2 theta))/(1 + 2 cos theta sin theta - 1)`
`= (2 cos^2 theta + 2 cos theta)/(2 cos theta sin theta)`
`= (2 cos^2 theta + 2 cos theta)/(2 cos theta sin theta)`
`= (2 cos theta(cos theta + 1))/(2 cos theta sin theta)`
`= (cos theta + 1)/sin theta`
`= cos theta/sin theta + 1/sin theta`
`= cot theta + cosec theta`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
What is the value of (1 + cot2 θ) sin2 θ?
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to