हिंदी

Prove the following trigonometric identity. sinθ-cosθ+1sinθ+cosθ-1=1secθ-tanθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`

योग

उत्तर

Solving the function using trignometric identities:

As we have `(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`

LHS = `(sin theta - cos theta + 1)/(sin theta + cos theta - 1)`

Dividing the numerator and denomenator by cos θ

`(sin theta/cos theta - cos theta/cos theta + 1/cos theta)/(sin theta/cos theta + cos theta/cos theta - 1/cos theta)`

= `(tan theta - 1 + sec theta)/(tan theta + 1 - sec theta)`

Multiplying and dividing by (tan θ - sec θ),

= `(tan theta + sec theta - 1)/(tan theta - sec theta + 1)xx (tan theta - sec theta)/(tan theta - sec theta)`

[(tan θ + sec θ)(tan θ - sec θ = tan2θ - sec2θ)]

= `[((tan^2 theta - sec^2 theta) - (tan theta - sec theta))/((tan theta - sec theta + 1)(tan theta - sec theta))]`

Using the identity sec2θ - tan2 θ = 1,

= `((-1 - tan theta + sec theta))/([(tan theta - sec theta + 1)(tan theta - sec theta)])`

= `(-1)/(tan theta - sec theta)`

= `1/(sec theta - tan theta)`

= RHS Hence proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 47.2 | पृष्ठ ४५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×