Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
उत्तर
Solving the function using trignometric identities:
As we have `(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
LHS = `(sin theta - cos theta + 1)/(sin theta + cos theta - 1)`
Dividing the numerator and denomenator by cos θ
`(sin theta/cos theta - cos theta/cos theta + 1/cos theta)/(sin theta/cos theta + cos theta/cos theta - 1/cos theta)`
= `(tan theta - 1 + sec theta)/(tan theta + 1 - sec theta)`
Multiplying and dividing by (tan θ - sec θ),
= `(tan theta + sec theta - 1)/(tan theta - sec theta + 1)xx (tan theta - sec theta)/(tan theta - sec theta)`
[(tan θ + sec θ)(tan θ - sec θ = tan2θ - sec2θ)]
= `[((tan^2 theta - sec^2 theta) - (tan theta - sec theta))/((tan theta - sec theta + 1)(tan theta - sec theta))]`
Using the identity sec2θ - tan2 θ = 1,
= `((-1 - tan theta + sec theta))/([(tan theta - sec theta + 1)(tan theta - sec theta)])`
= `(-1)/(tan theta - sec theta)`
= `1/(sec theta - tan theta)`
= RHS Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If 2sin2β − cos2β = 2, then β is ______.
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
sec θ when expressed in term of cot θ, is equal to ______.