Advertisements
Advertisements
प्रश्न
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
उत्तर
Given:
x = a sinθ and y = b cosθ
So, \[b^2 x^2 + a^2 y^2 = b^2 \left( asin\theta \right)^2 + a^2 \left( bcos\theta \right)^2 \]
\[ = a^2 b^2 \sin^2 \theta + a^2 b^2 \cos^2 \theta\]
\[ = a^2 b^2 \left( \sin^2 \theta + \cos^2 \theta \right)\]
We know that, `sin^2 θ+cos^2θ=1`
Therefore,
\[b^2 x^2 + a^2 y^2 = a^2 b^2\]
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `sec theta + tan theta = x," find the value of " sec theta`
sec4 A − sec2 A is equal to
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A