Advertisements
Advertisements
प्रश्न
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
उत्तर
LHS = `tan^2A - sin^2A`
= `sin^2A/cos^2A - sin^2A = (sin^2A(1 - cos^2A))/cos^2A`
= `sin^2A/cos^2A.sin^2A = tan^2A.sin^2A` = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Simplify : 2 sin30 + 3 tan45.
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ