हिंदी

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.

विकल्प

  • 0

  • 1

  • 2

  • -1

  • none of these

MCQ
रिक्त स्थान भरें

उत्तर

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = 2.

Explanation:

(1 + tan θ + sec θ) (1 + cot θ − cosec θ)

= `(1+ (sin theta)/(cos theta)+1/(costheta))(1+(costheta)/(sin theta)-1/(sin theta))`

= `((costheta+sintheta +1)/costheta)((sintheta+cos theta -1)/sintheta)`

= `((sintheta+costheta)^2-(1)^2)/(sinthetacostheta)`

= `(sin^2theta+cos^2 theta + 2sin theta cos theta -1)/(sinthetacostheta)`

= `(1+2sinthetacostheta -1)/(sinthetacostheta)`

= `(2sintheta costheta)/(sin theta costheta)`

= 2

Hence, alternative 2 is correct.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.4 | Q 4.2 | पृष्ठ १९३
सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
अध्याय 6 Trigonometry
Exercise 6.5 | Q 8 | पृष्ठ २६६
आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 26 | पृष्ठ ५८

संबंधित प्रश्न

If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


` tan^2 theta - 1/( cos^2 theta )=-1`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Write the value of cos1° cos 2°........cos180° .


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×