Advertisements
Advertisements
प्रश्न
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
उत्तर
L.H.S. = `(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2`
= `(sinA/cosA + 1/cosA)^2 + (sinA/cosA - 1/cosA)^2`
= `((sinA + 1)/cosA)^2 + ((sinA - 1)/cosA)^2`
= `(sinA + 1)^2/(cos^2A) + (sinA - 1)^2/(cos^2A)`
= `((sinA + 1)^2 + (sinA - 1)^2)/(cos^2A)`
= `(sin^2A + 1 + 2sinA + sin^2A + 1 - 2sinA)/cos^2A`
= `(2sin^2A + 2)/(cos^2A)`
= `(2(1 + sin^2A))/(1 - sin^2A)`
= `2((1 + sin^2A)/(1 - sin^2A))` = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove that sec2θ − cos2θ = tan2θ + sin2θ