Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
उत्तर
LHS = `sec^2A + cosec^2A`
= `1/cos^2A + 1/sin^2A = (sin^2A + cos^2A)/(cos^2A.sin^2A)`
= `1/(cos^2A.sin^2A) = sec^2Acosec^2A` = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.