Advertisements
Advertisements
Question
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Solution
LHS = `sec^2A + cosec^2A`
= `1/cos^2A + 1/sin^2A = (sin^2A + cos^2A)/(cos^2A.sin^2A)`
= `1/(cos^2A.sin^2A) = sec^2Acosec^2A` = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is