Advertisements
Advertisements
Question
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Solution
L.H.S. = (cosec A – sin A) (sec A – cos A) (tan A + cot A)
= `(1/sinA - sinA)(1/cosA - cosA)(1/tanA + tanA)`
= `((1 - sin^2A)/sinA)((1 - cos^2A)/cosA)(sinA/cosA + cosA/sinA)`
= `(cos^2A/sinA)(sin^2A/cosA)((sin^2A + cos^2A)/(sinA.cosA))`
= `(cos^2A/sinA)(sin^2A/cosA)((1)/(sinA.cosA))`
= 1 = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.