Advertisements
Advertisements
प्रश्न
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
उत्तर
LHS = `sinA/sin(90^circ - A) + cosA/cos(90^circ - A)`
⇒ `cos(90^circ - A)/sin(90^circ - A) + sin(90^circ - A)/cos(90^circ - A)`
⇒ `(cos^2(90^circ - A) + sin^2(90^circ - A))/(sin(90^circ - A) . cos(90^circ - A)) = 1/(sin(90^circ - A) . cos(90^circ - A))`
⇒ `sec(90^circ - A) cosec(90^circ - A)`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Choose the correct alternative:
sec2θ – tan2θ =?