Advertisements
Advertisements
प्रश्न
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
उत्तर
L.H.S. = tan A – cot A
= `(sin A)/(cos A) - (cos A)/(sin A)`
= `(sin^2A - cos^2A)/(sin A cos A)`
= `(1 - cos^2A - cos^2A)/(sin A cos A)` ...(∵ sin2A = 1 – cos2A)
= `(1 - 2cos^2A)/(sin A cos A)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
The value of sin2 29° + sin2 61° is
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Choose the correct alternative:
cot θ . tan θ = ?
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ