Advertisements
Advertisements
प्रश्न
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
उत्तर
LHS = `sqrt(((1 + cos A)(1 + cos A))/((1 - cos A)(1 + cos A)))`
= `sqrt((1 + cos A)^2/(1 - cos^2 A))`
= `sqrt((1 + cos^2 A + 2cos A)/sin^2 A`
= `(1 + cos A)/sin A`
RHS = `(tan A + sin A)/(tan A sin A)`
= `(sin A(1/cos A + 1))/((sin A/cos A xx sin A)`
= `(sin A( 1 + cos A))/cos A xx cos A/(sin A sin A)`
= `(1 + cos A)/sin A`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ