Advertisements
Advertisements
प्रश्न
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
उत्तर
L.H.S = sin θ (1 – tan θ) – cos θ (1 – cot θ)
= `sintheta (1 - (sintheta)/(costheta)) - costheta (1 - (costheta)/(sintheta))`
= `sintheta - (sin^2theta)/costheta - costheta + (cos^2theta)/sintheta`
= `sintheta + (cos^2theta)/sintheta - (sin^2theta)/costheta - costheta`
= `(sin^2theta + cos^2theta)/sintheta - ((sin^2theta + cos^2theta)/costheta)`
= `1/sintheta - 1/costheta` ......[∵ sin2θ + cos2θ = 1]
= cosec θ – sec θ
= R.H.S
∴ sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.