Advertisements
Advertisements
प्रश्न
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
उत्तर
LHS = `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) `
= `cos θ/cos θ + sin θ/sin θ`
= 1 + 1 = 2
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
`(1 + cot^2 theta ) sin^2 theta =1`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
If x = a tan θ and y = b sec θ then