Advertisements
Advertisements
Question
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Solution
LHS = `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) `
= `cos θ/cos θ + sin θ/sin θ`
= 1 + 1 = 2
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.