English

Prove the Following Trigonometric Identities If X = A Sec θ + B Tan θ And Y = A Tan θ + B Sec θ, Prove That X2 − Y2 = A2 − B2 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2

Solution

`Given that

`x = a sec theta + b tan theta`

`y = a ta theta +  b sec theta`

We have to prove  `x^2 - y^2 = a^2 - b^2`

We know that `sec^2 theta - tan^2 theta  = 1`

So,

`x^2 - y^2`

`= (a sec theta + b tan theta)^2 - (a tan theta + b sec theta)^2`

`= (a^2 sec^2 theta + 2 ab sec theta + b^2 tan^2 theta) - (a^2 tan^2 theta +  2 ab sec theta tan theta + b^2 + sec^2 theta)`

`= a^2 (sec^2 theta  -  tan^2 theta) - b^2 (sec^2 theta -  tan^2 theta)`

`= a^2 - b^2 `

Hence proved. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 74 | Page 46

RELATED QUESTIONS

If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


If tanθ `= 3/4` then find the value of secθ.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Evaluate:
`(tan 65°)/(cot 25°)`


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Choose the correct alternative:

cos 45° = ?


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×