Advertisements
Advertisements
Question
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Solution
`Given that
`x = a sec theta + b tan theta`
`y = a ta theta + b sec theta`
We have to prove `x^2 - y^2 = a^2 - b^2`
We know that `sec^2 theta - tan^2 theta = 1`
So,
`x^2 - y^2`
`= (a sec theta + b tan theta)^2 - (a tan theta + b sec theta)^2`
`= (a^2 sec^2 theta + 2 ab sec theta + b^2 tan^2 theta) - (a^2 tan^2 theta + 2 ab sec theta tan theta + b^2 + sec^2 theta)`
`= a^2 (sec^2 theta - tan^2 theta) - b^2 (sec^2 theta - tan^2 theta)`
`= a^2 - b^2 `
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If tanθ `= 3/4` then find the value of secθ.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Choose the correct alternative:
cos 45° = ?
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α