English

Prove the Following Trigonometric Identities. Tan2 A Sec2 B − Sec2 A Tan2 B = Tan2 A − Tan2 B - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B

Solution

LHS = `tan^2 A sec^2 B - sec^2 A tan^2 B`

`= tan^2 A + (1 + tan^2 B) - sec^2 A (tan^2 A)`

`= tan^2 A + tan^2 A tan^2 B - tan^2 B(1 + tan^2 A)`     (`∵ sec^2 A = 4 tan^2 A`)

`= tan^2 A + tan^2 A tan^2 B - tan^2 B - tan^2 B tan^2 A`

`= tan^2 A - tan^2 B`

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 73 | Page 46

RELATED QUESTIONS

Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


If cosθ = `5/13`, then find sinθ. 


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


If tan θ × A = sin θ, then A = ?


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×