Advertisements
Advertisements
Question
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Solution
LHS = `tan^2 A sec^2 B - sec^2 A tan^2 B`
`= tan^2 A + (1 + tan^2 B) - sec^2 A (tan^2 A)`
`= tan^2 A + tan^2 A tan^2 B - tan^2 B(1 + tan^2 A)` (`∵ sec^2 A = 4 tan^2 A`)
`= tan^2 A + tan^2 A tan^2 B - tan^2 B - tan^2 B tan^2 A`
`= tan^2 A - tan^2 B`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
If cosθ = `5/13`, then find sinθ.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If tan θ × A = sin θ, then A = ?
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`