English

Prove the Following Trigonometric Identities. Sin2 A Cos2 B − Cos2 A Sin2 B = Sin2 A − Sin2 B - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B

Solution

We know that `sin^2 A + cos^2 A = 1`

So have

`sin^2 A cos^2 B - cos^2 A sin^2 B = sin^2 A (1 - sin^2 B) - (1 - sin^2 A) sin^2 B`

`= sin^2 A - sin^2 A sin^2 B - sin^2 B + sin^2 A sin^2 B`

`= sin^2 A - sin^2 B`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 69 | Page 46

RELATED QUESTIONS

Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


9 sec2 A − 9 tan2 A is equal to


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×