Advertisements
Advertisements
Question
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Solution
We know that `sin^2 A + cos^2 A = 1`
So have
`sin^2 A cos^2 B - cos^2 A sin^2 B = sin^2 A (1 - sin^2 B) - (1 - sin^2 A) sin^2 B`
`= sin^2 A - sin^2 A sin^2 B - sin^2 B + sin^2 A sin^2 B`
`= sin^2 A - sin^2 B`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
9 sec2 A − 9 tan2 A is equal to
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.