Advertisements
Advertisements
Question
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Solution
L.H.S. = `sqrt((1 - cosA)/(1 + cosA))`
= `sqrt((1 - cosA)/(1 + cosA) xx (1 - cosA)/(1 - cosA))`
= `sqrt((1 - cosA)^2/(1 - cos^2A))`
= `sqrt((1 - cosA)^2/(sin^2A)`
= `(1 - cosA)/sinA`
= `1/sinA - cosA/sinA`
= cosec A – cot A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `sec theta + tan theta = x," find the value of " sec theta`
Write the value of cosec2 (90° − θ) − tan2 θ.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If cosA + cos2A = 1, then sin2A + sin4A = 1.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.