Advertisements
Advertisements
Question
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Options
a2 – b2
b2 – a2
a2 + b2
b – a
Solution
b2 – a2
Explanation;
(a cot θ + b cosec θ)2 = p2
(b cot θ + a cosec θ)2 = q2
p2 – q2 = a2 cot2θ + a2 cot2θ + 2ab cot θ cosec θ – (b2 cot2θ + a2 cosec2θ + 2ab cot θ cosec θ)
= (a2 – b2) cot2θ + (b2 – a2) cosec2θ
= (a2 – b2) (cosec2θ – 1) + (b2 – a2) (cosec2θ)
= (a2 – b2) cosec2θ – (a2 – b2) – (a2 – b2) cosec2θ
= b2 – a2
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.