Advertisements
Advertisements
Question
If `sec theta + tan theta = x," find the value of " sec theta`
Solution
We have ,
`sec theta + tan theta = x ............(i)`
⇒ `(sec theta + tan theta )/1 xx (sec theta- tan theta )/(sec theta - tan theta ) = x`
`⇒ (sec ^2 theta - tan^2 theta )/( sec theta - tan theta) = x`
`⇒1/ (sec theta - tan theta ) = x/1`
`⇒ sec theta - tan theta = 1/x ` ............(ii)
๐ด๐๐๐๐๐ (๐)๐๐๐ (๐๐), ๐ค๐ ๐๐๐ก
`2 sec theta = x+ 1/x`
⇒` 2 sec theta = (x^2+1)/x`
∴ `sec theta = (x^2 +1)/(2x)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ