English

If `Cot Theta = 1/ Sqrt(3) , "Write the Value Of" ((1- Cos^2 Theta))/((2 -sin^2 Theta))` - Mathematics

Advertisements
Advertisements

Question

If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`

Solution

We have , 

 `cot theta = 1/ sqrt(3)`

  ⇒` cot theta = cot (π/3)`

  ⇒`theta = π/3`

 Now , 

     `((1- cos^2 theta))/((2 - sin^2 theta))`

    = `(1- cos ^2(π/3))/( 2 - sin ^2 ( π/ 3))` 

    =` (1- (1/2)^2)/(2-(sqrt(3)/2)^2)`

    =` ((1/1 - 1/4))/((2/1-3/4))`

    =`((3/4))/((5/4))`

    =`3/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 22

RELATED QUESTIONS

Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Choose the correct alternative:

Which is not correct formula?


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×