Advertisements
Advertisements
Question
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Solution
We have ,
`cot theta = 1/ sqrt(3)`
⇒` cot theta = cot (π/3)`
⇒`theta = π/3`
Now ,
`((1- cos^2 theta))/((2 - sin^2 theta))`
= `(1- cos ^2(π/3))/( 2 - sin ^2 ( π/ 3))`
=` (1- (1/2)^2)/(2-(sqrt(3)/2)^2)`
=` ((1/1 - 1/4))/((2/1-3/4))`
=`((3/4))/((5/4))`
=`3/5`
APPEARS IN
RELATED QUESTIONS
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Choose the correct alternative:
Which is not correct formula?
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.