English

Prove that Secθ + Tanθ = Cos θ 1 − Sin θ . - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.

Solution

secθ + tanθ = `1/cosθ + sintheta/cosθ`
                    `=(1+sintheta)/costheta`

                   `=((1+sintheta)(1-sintheta))/(costheta (1-sintheta))`

                 `=(1^2 - sin^2theta)/(costheta(1-sintheta))`

                 `=cos^2theta/(costheta(1-sintheta))`

  `therefore sectheta +tantheta =costheta/(1-sintheta)`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Balbharati Model Question Paper Set 3

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


cosec4θ − cosec2θ = cot4θ + cot2θ


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×