Advertisements
Advertisements
Question
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Solution
`(1 - sin^2θ)sec^2θ = 1`
Consider L.H.S = `cos^2θsec^2θ`
= `cos^2θ xx 1/cos^2θ = 1`
= R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`