Advertisements
Advertisements
Question
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Solution
LHS = `(tanθ + sinθ)/(tanθ - sinθ)`
= `(sinθ/cosθ + sinθ)/(sinθ/cosθ - sinθ) = (sinθ + sinθcosθ)/(sinθ + sinθcosθ)`
= `(sinθ(1 + cosθ))/sin(1 + cosθ) = (1 + cosθ)/(1 - cosθ)`
= `(1 + 1/secθ)/(1 - 1/secθ) = ((secθ + 1)/secθ)/((secθ - 1)/secθ)`
= `(secθ + 1)/(secθ - 1)`
APPEARS IN
RELATED QUESTIONS
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.